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ABSTRACT: In this paper, using some conditions of (sub) compatibility between a set-valued mapping and a 

single- valued mapping, we establish a necessary and sufficient condition for set-valued generalized 

nonexpansive mappings to have a unique common fixed point in complete random convex metric spaces. The 

results improve, extend and develop the main results in [2-7] and [18] for random variable. 
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I. INTRODUCTION AND PRELIMINARIES 

Probabilistic functional analysis has emerged as one of 

the important mathematical disciplines in view of its 

role in analyzing probabilistic models in the applied 

sciences. The study of fixed points of random operators 

forms a central topic in this area. The Prague school of 

probabilistic initiated its study in the 1950. In recent 

years, the study of random fixed points has attracted 

much attention. In particular, random iteration schemes 

leading to random fixed point of random operators have 

been discussed in [19-22]. 

Sessa introduced the concept of weakly commuting 

mappings in[1]. Two single-valued mappings	�	 and � 
of a metric space (�, �) into itself are said to be weakly 

commuting if  �(���, ���) ≤ �(��, ��) 
for all � in �. Recently, Fisher and Sessa [2] proved the 

following generalization of a theorem of Gregus [3] for 

two weakly commuting mappings � and �.  
Theorem 2.1 Let � be a nonempty closed convex 

subset of a Banach space �,� and � be two weakly 

commuting mappings of � into itself satisfying the 

inequality  ‖�� − ��‖ ≤ �‖�� − ��‖+ (1 − �)max�‖�� −��‖, ‖�� − ��‖�  
for all �, � in �, where 0 < � < 1. If � is linear, 

nonexpansive in � and such that �� contains ��, then � 

and � have a unique common fixed point in C.  

Mukherjee and Verma [4] proved that Theorem 1.1 

remains true when "� is linear” is replaced by "� is 

affine”. In a recent paper jungck [5] showed that 

Theorem 1.1 can be generalized by substituting 

compatibility for weak commutativity and continuity 

for the nonexpansive requirement.  

The purpose of this paper is to further extend 

Theorem 1.1, with the help of some conditions of 

compatibility between a set-valued mapping and a 

single-valued mapping. We will establish a necessary 

and sufficient condition and a sufficient condition for 
set-valued generalized nonexpansive mappings to have 

a unique common fixed point in complete convex 

metric spaces. Our results are motivated by main results 

of Fisher and Sessa [2], Mukherjee and Verma [4], 

Jungck [5], Li [6] , Fisher [7], Gregus [3]  Choudhary 

[22] and the others  

II. BASIC  DEFINITIONS AND LEMMAS  

Let (�, �) be a complete metric space and �(�) be the 

set of all nonempty bounded subsets of �. As in [8 − 11], let �( , �) be the function defined by  �( , �) = sup	��(�, %): � ∈  , % ∈ ��,  
For all  , � in �(�). If  = ��� is singleton, we write �( , �) = �(�, �) and if � also consists of a single 

point % we write �( ,�) = �(�, %). It follows 

immediately from the definition that  �( , �) = �(�,  ) ≥ 0,							�( , �) ≤ �( , �) +�(�, �),  �( ,  ) = �)�* , �( ,�) = 0 ⇔  = � = ���  
for all  ,�, � in �(�).  
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Definition 2.1 ([8, 10]) A sequence � ,� of subsets of � is said to converge to a subset   of � if  

(1)  Given � ∈  , there is a sequence ��,� in � 

such that �, ∈  , for * = 1,2,…. and ��,� converges 

to �;  
(2)  Given 0 > 0, there exists a positive integer 2 

such that  , ⊆  4, for * > 2 where  4 , is the 

union of all open spheres with centers in  	 
and radius 0 

  Lemma 2.1 [8, 10] If � ,� and ��,� are 

sequence in �(�) converging respectively to   and � 

in �(�), then sequence ��( , ,�,)� converges to �( , �). 
Lemma 2.2 ([10])  Let  , be a sequence in �(�) and � be a point of � such that �( ,, �) → 0, 

then the sequence � ,� converges to the set ��� in �(�).  
Definition 2.2 ([8,10]) A set-valued mapping 6 of � into �(�) is said to be continuous at � ∈ � if the 

sequence �6�,� in �(�) converges to 6� whenever ��,� is a sequence in � converging to � in �, 6 is said 

to be continuous on � if it is continuous at every point 

of �.  
 In a recent paper, Jungck[12] made an extension 

of weak commutivity in the following way: 

Definition 2.3 Two single-valued self-mappings 7 and 8 of metric space (�, �) are compatible if �(78�, , 87�,) → 0. whenever ��,� is a sequence in � 

such that 7�, → 9,8�, → 9 for some point in �.  
It can be seen that two weakly commuting 

mappings are compatible but the converse is false.  

Definition 2.4 The mappings 7: � → � and 6: � →�(�) are compatible if �(67�, , 76�,) → 0, whenever ��,� is a sequence in � such that 76�, ∈ �(�), 6�, →�9� and 7�, → 9 for some point 9 in �. 

 Definition 2.5 The mappings 7: � → � and 6: � →�(�) are sub compatible if :9 ∈ �: 69 = �79�; ⊆�9 ∈ �: 679 = 769�. 
Definition 2.6 ([14, 15]) A mapping >:� × � ×[0,1] → � is called a convex structure on �, if for any (�, �, @) ∈ � × � × [0,1] and any A ∈ �  �BA,>(�, �, @)C ≤ @�(A, �) + (1 − @)�(A, �). 
 A metric space with a convex structure is called a 

convex metric space. A nonempty subset D of � is said 

to be convex if >(�, �, @) ∈ D for all �, � in D and for 

all @ ∈ 		 [0,1].  
Let E be the set of all the functions F: [0,∞) → [0,∞) which is continuous from the right 

and F(29) < 9 for all 9 > 0.  
Lemma 2.3[18] Let D be a nonempty closed subset of a 

complete metric space (�, �). 

If mapping f:K → K and F:K → B(K) satisfy the 

following inequality  �(6�, 6�) ≤��(7�, 7�)+ F(2G����(6�, 7�), �(6�, 7�)�)        
  (2.1)  

For all �, � in D, where 0 ≤ � < 1 and F ∈ E, then  

(1) 6 and 7 have at most one common fixed point A in D, and further 6BH, A(H)C = �A(H)�, 
(2) If ��,� is a sequence in D such that �(6�, , 7�,) → 0, then there exists a A ∈ D such that 6�, → �A� and 7�, → A.  

Throughout this paper, ( )ΣΩ,  denotes a measurable 

space, C is non empty subset of K 

Definition 2.7 Measurable function: A function

Cf →Ω:   is said to be measurable if 

Σ∈∩− )(1
CBf foe every Borel subset B of X. 

Definition 2.8 Random operator: A function 

CCf →×Ω:  is said to be random operator, if 

CXF →Ω:)(.,  is measurable for every X ∈  C 

Definition 2.9Continuous Random operator: A 

random operator cCf →×Ω:  is said to be 

continuous if for fixed 

continuousisCCtft →Ω∈ :,.)(,  

Definition 2.10. Random fixed point: A measurable 

function Cg →Ω:  is said to be random fixed point 

of the random operator  

( ) Ω∈∀=→×Ω ttgtgtfifCCf ),()(,,:  

Definition 2.11: Let (X, d) be a metric space and 

( )ΣΩ,  is a measurable space, J= [0,1]. A mapping >:	� × � × I → �	,is called a convex structure on X 
for random operator if for each  (�(H), �(H), �) ∈ � × � × I and u(t) ∈ � �(A(H),>(H, (�(H), �(H), �)) ≤ �	�BA(H), �(H)C +	(1 − �)�(A(H), �(H)) 
A metric space X together with a convex structure w 
and random operator is called a convex random metric 

space. 

Definition 2.12: A nonempty subset K of a convex 

random metric space (X,d) with a convex structure w is 

said to be convex if for all 

K  )] y(t), (x(t), [t,  wJ,KxxK  ) y(t), (x(t), ∈∈ δδ

Throughout this paper, a random convex metric space 

will be denoted by (�, �,>).It is easy to know that, 

any linear normed space and their convex subsets are 

convex metric spaces. It is to be noted that the 

definitions 2.1 to 2.6 and lemma 2.1 to 2.3 all are true 
for random operator 
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III. MAIN RESULTS 

Theorem 3.1 Let D be a nonempty closed subset of a complete metric space (�, �). ( )ΣΩ,  denotes a measurable 

space; C is non empty subset of K, let 6 be a mapping of D into �(D) and 7 a mapping of D into itself satisfying the 

inequality (2.1). if 6 and 7 satisfy one of the following conditions:  

(1) (6, 7) are compatible and 7 is continuous:  

(2) (6, 7) are compatible 6D ⊆ 7D and 6 is continuous:  

(3) (6, 7) are subcompatible and 7 is surjective, 	
Then 6 and 7 have a unique common fixed point A(H) in D such that 6BH, A(H)C = �A(H)�   if  inf M� N6BH, �(H)C, 7BH, �(H)CO : �(H) ∈ DP = 0.  
Proof Suppose that A(H) is a unique common fixed point of 6 and 7 in D, i.e. 

 A(H) = 7BH, A(H)C ∈ 6BH, A(H)C. Using the inequality (2.1), we obtain that  � N6BH, A(H)C, A(H)O ≤ � N6BH, A(H)C, 6BH, A(H)CO ≤ F Q2� N6BH, A(H)C, A(H)OR,  
Which implies 6BH, A(H)C = �A(H)� by F ∈ E, and so  

inf M� N6BH, �(H)C, 7BH, �(H)CO : �(H) ∈ DP = 0. therefore, necessity is proved. To prove sufficient let ��,(H)� is a 

sequence such that  � N6BH, �,(H)C,7BH, �,(H)CO → inf M� N6BH, �(H)C, 7BH, �(H)CO : �(H) ∈ DP = 0.  
It follows from Lemma 2.3 (2) that the sequence :7BH, �,(S)C; converges to some point A(H) ∈ D and the sequence 

of sets :6BH, �,(H)C; converges to the set �A(H)�.  
Now suppose that (1) holds. Then the sequence :7TBH, �,(H)C; and :76BH, �,(H)C; converge to 7BH, A(H)C 

and :	7BH, A(H)C; respectively. Since  � N67BH, �,(H)C, 7BH, A(H)CO ≤ � N67BH, �,(H)CO , 76BH, �,(H)C  +� N76BH, �,(H)C,7BH, A(H)CO  

 And (6, 7) are compatible, we have that � N67BH, �,(H)C,7BH, A(H)CO → 0, which implies the sequence :76BH, �,(H)C; converges to :7BH, A(H)C; by Lemma 2.2. Using the inequality (2.1) we have that  � N76BH, �,(H)C,6BH, �,(H)CO ≤ �� N7TBH, �,(H)C,7BH, �,(H)CO +F(2maxM� N67BH, �,(H)C,7TBH, �,(H)CO , �(6BH, �(H)C, 7BH, �(H)CP 
Which implies, as * → ∞, that � N7BH, A(H)C, A(H)O ≤ �� N7BH, A(H)C, A(H)O by Lemma 2.1 and hence 7BH, A(H)C =A(H) Using again the inequality (2.1), we have  � N6BH, �,(H)C,6BH, A(H)CO ≤ �� N7BH, �,(H)C, 7(H, A(H)O 

+F(2maxU� N6BH, �,(H)C, 7BH, �,(H)C, �,(H)O ,� N6BH, A(H)C, 7BH, A(H)CO V  

and this implies, as * → ∞, that  � NA(H), 6BH, A(H)CO ≤ F Q2� N6BH, A(H)C, A(H)OR  

Then 6BH, A(H)C = �A(H)� and hence A(H) is also a fixed point of 6. therefore, by Lemma 2.3 (1) we know that A(H) 
is the unique common fixed point 6 and 7.  

Now suppose that (2) holds. Then the sequence :67BH, �,(H)C;	 converges to 6BH, A(H)C. Let A,(H) be an 

arbitrary point in 6BH, �,(H)C for * = 1,2,…… .. Then since �BA,(H), A(H)C ≤ � N6BH, �,(H)C, A(H)O and 6 is 

continuous, we get that the sequence :6BH, A,(H)C; converges to 6BH, A(H)C. Using inequality (2.1) we have that  
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� N6BH, A,(H)C,6BH, �(H)CO ≤�� N7BH, A,(H)C,7BH, �,(H)CO+ F(2maxM� N6BH, A,(H)C,7BH, A,(H)CO , � Q6 NH, �,(H),7BH, �,(H)CORP ≤� W� N76BH, �,(H)C, 67BH, �,(H)CO+ � N67BH, �,(H)C,7BH, �,(H)COX          +FN2max 	 M� N6BH, A,(H)C, 67BH, �,(H)CO + � N67BH, �,(H)C, 76BH, �,(H)CO , � N6BH, �,(H)C,7BH, �,(H)COPO  
Since F is right continuous and (6, 7) are compatible, as * → ∞, using (2.2) and Lemma 2.1, we obtain that  � N6BH, A(H)C, A(H)O ≤ �� N6BH, A(H)C, A(H)O + F(2� N6BH, A(H)C, A(H)O.        (3.1) 

But again using inequality (2.1), we deduce that  � N6BH, A,(H)C,6BH, A,(H)CO ≤ �� N7BH, A,(H)C, 7BH, A,(H)CO+ F(2� N6BH, A,(H)C, 7BH, A,(H)CO  

≤ FQ2� N6BH, A,(H)C, 67(H, �,(H)O + 2�B67BH, �,(H)C,76(H, �,(H)CR,  
Which implies, as * → ∞, by the compatibility of (6, 7) and Lemma 2.1 that  � N6BH, A(H)C, 6BH, A(H)CO ≤ F Q2� N6BH, A(H)C, A(H)OR,  
and hence � N6BH, A(H)C, 6BH, A(H)CO = 0. Form (3.1), it follows that 6BH, A(H)C = �A(H)�. Since 6D ⊆ 7D, there 

exists a point Y in D such that 7Y = A(H) and using the inequality (2.1), we have that  �B6BH, �,(H)C, 6YC ≤ ��B7BH, �,(H)C, 7YC + F N2maxM� N6BH, �,(H)C,7BH, �,(H)C,�(6Y, 7Y)OPO,  
Which implies, as * → ∞, that  �(A(H), 6Y) ≤ F(2�B6Y, A(H)C.  
Thus 6Z = �A(H)� and since (6, 7) are compatible we have that �A(H)� = 6BH, A(H)C = 67Z = 76Z =:7BH, A(H)C;. It follows from Lemma 2.3 (1) that A(H) the unique common fixed point of 6 and 7.  

Now suppose that (3) holds. Then there exists a point [ in K such that 7[ = A(H) and using the inequality 

(2.1), we have that  � N6[, 6BH, �,(H)CO ≤ �� N7[, 7BH, �,(H)CO + FB2max:�(6[, 7[), �B6(H, �,(H)), 7(H, �,(H)C;C, 
Which implies, as * → ∞, by F ∈ E and Lemma 2.1 that  �B6[, A(H)C ≤ F N2�B6[, A(H)CO,  
Thus 6[ = �A(H)� and since (6, 7) are sub compatible we have that 6BH, A(H)C = 67[ = 76[ = :7BH, A(H)C;. But 

again using the inequality (2.1),we deduce that  � N6BH, A(H)C, 6BH, �,(H)CO 
≤ �� N7BH, A(H)C, 7BH, �,(H)CO + � \2max]� N6BH, A(H)C, 7BH, A(H)CO , � \6BH, �,(H)C,7BH, �,(H)C^_^		  
Which implies, an * → ∞ by Lemma 2.1 that  � N7BH, A(H)C, A(H)O ≤ � N6BH, A(H)C, A(H)O ≤ �� N7BH, A(H)C, A(H)O.  
It follows that 7BH, A(H)C = A(H) and thus A(H) is the unique common fixed point of 6 and 7 by Lemma 2.2 (1). 

This completes the proof of Theorem 3.1. 

Corollary 3.1 Let D be a nonempty closed subset of a complete metric space (�, �),
 
( )ΣΩ,  denotes a measurable 

space, C is non empty subset of K, let 6 be a mapping of D into �(D) and 7 a mapping of D into itself satisfying the 

inequality  � N6BH, �(H)C, 6BH, �(H)CO ≤ �� N7BH, �(H)C, 7BH, �(H)CO + 2%G�� M� N6BH, �(H)C, 7BH, �(H)CO , � N6BH, �(H)C, 7BH, 7(H)COP,  
for all �(H), �(H) in D, where 0 ≤ � < 1, 0 ≤ 2% < 1. If 6 and 7 satisfy one of the three conditions in Theorem 3.1, 

then 6 and 7 have a unique common fixed point A(H) in D such that 6BH, A(H)C = �A(H)� if f inf M� N6BH, �(H)C, 7BH, �(H)CO : �(H) ∈ DP = 0.  
Proof Let F(H) = %H for all H ∈ [0,∞). Then F ∈ E and hence the conclusions of Corollary 3.1 follows 

from Theorem 3.1. 
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Theorem 3.2 Let D be a nonempty closed subset of a complete convex metric space (�, �,>),
 
( )ΣΩ,  denotes a 

measurable space, C is non empty subset of K, let 6 be a mapping of D into �(D) and 7 a mapping of D into itself 

satisfying the following inequality  � N6BH, �(H)C, 6BH, �(H)CO ≤ �� N7BH, �(H)C, 7BH, �(H)CO  

                        +(1 − �)maxU� N6BH, �(H)C, 7BH, �(H)CO ,� N6BH, �(H)C, 7BH, �(H)CO V          (3.2) 

for all �, � in D, where 0 < � < 1. If 7D is a convex subset of D such that 6D ⊆ 7D, and 6 and 7 satisfy one of the 

three conditions in Theorem 3.1, then 6 and 7 have a unique common fixed point in D such that 6BH, A(H)C =�A(H)�.  
Proof:  Let �(H) = �`(H) be anarbitrary point in D and choose points �a(H), �T(H), �b(H) in D such that  7BH, �a(H)C ∈ 6BH, �(H)C,      7BH, �T(H)C ∈ 6BH, �a(H)C,      7BH, �b(H)C ∈ 6BH, �T(H)C.  
This can be done since 7D contains 6D. Then for ) = 1,2,3 we have on using the inequaliy (3.2) 

 � Q6BH, �d(H)C, 7BH, �d(H)C ≤ � N6BH, �d(H)C, 6BH, �dea(H)COR  
                 ≤ �� N7BH, �d(H)C, 7(H, �dea(H)O + (1 − �)maxU � N6BH, �d(H)C, 7BH, �d(H)CO ,� N6BH, �dea(H)C, 7(H, �dea(H)OV  

             ≤ �� N6BH, �dea(H)C, 7BH, �dea(H)CO + (1 − �)maxU � N6BH, �d(H)C, 7BH, �d(H)CO ,� N6BH, �dea(H)C, 7BH, �dea(H)COV  

and so  

   � N6BH, �d(H)C, 7(H, �d(H)O ≤ � N6BH, �dea(H)C, 7BH, �dea(H)CO.  
It follows that  

 � N6BH, �d(H)C, 7(H, �d(H)O ≤ N6BH, �(H)C, 7BH, �(H)CO               (3.3) 

for ) = 1, 2, 3. We shall now define a point f in D by  

    f = > N7BH, �T(H)C, 7BH, �b(H)C, aTO.  
 Since 7D is convex, there exists Z in D such that  

    7Z = f = > N7BH, �T(H)C,7BH, �b(H)C	, aTO 

⊆ >Q6BH, �a(H)C, 6BH, �T(H)C, 12R. 
By the definition of convex structure, the inequality (3.2) and (3.3) we have that  �B7BH, �a(H)C, 7ZC ≤, � Q7BH, �a(H)C,> N6BH, �a(H)C, 6BH, �T(H)C, aTOR  

≤ aT W� N7BH, �a(H)C, 6BH, �d(H)CO + � N7BH, �a(H)C, 6BH, �T(H)COX	  ≤ aT [� QN7BH, �d(H)C, 6BH, �(H)CO + N6BH, �(H)C	, 6BH, �T(H)COg  
≤ 12 W� N7BH, �(H)C, 6BH, �(H)CO + �� N7BH, �(H)C, 7BH, �T(H)CO+ (1 − �)max N� N6BH, �(H)C, 7BH, �(H)CO , � N6BH, �T(H)C,7(H, �T(H)OPX 

≤ 12 [� N6BH, �d(H)C, 7BH, �d(H)CO + �� N7BH, �(H)C, 7BH, �a(H)CO + ��(7(H, �a(H))	, 7(H, �T(H))) 	+ (1 − �)�B6BH, �(H)C, 7BH, �(H)Ch 
                              ≤ TijT � N6BH, �(H)C, 7BH, �(H)CO                                             (3.4) 

�B7BH, �T(H)C,			7ZC = � \7BH, �T(H)C, > Q7BH, �T(H)C, 7BH, �b(H)C, 12R^ 
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≤ 12�(7�T, 7�b) 
         ≤ aT� N6BH, �(H)C,7BH, �(H)CO      (3.5)  

It follows from (3.4) and (3.5) that  

�(6Z, 7Z) ≤ � \6Z,> Q6BH, �a(H)C, 6BH, �T(H)C, 12R^ 

≤ aT W� N6Z, 6BH, �a(H)CO + � N6Z, 6BH, �T(H)COX  ≤ �2 W� N7Z, 7BH, �a(H)CO + � N7Z,7BH, �T(H)COX + (1 − �)maxM�(6Z,7Z), � N6BH, �(H)C, 7BH, �(H)COP 
≤ �(3 + �)4 � N6BH, �(H)C,7BH, �(H)CO + (1 − �)maxM�(6Z, 7Z), � N6BH, �(H)C, 7BH, �(H)COP 
and so �(6Z, 7Z) ≤ �� N6BH, �(H)C, 7BH, �(H)CO, 
Where � = 4 − � − jkl < 1. Therefore  

inf M� N6BH, �(H)C,7BH, �(H)CO : � ∈ DP ≤ inf m�(6Z, 7Z):7Z = >n 7BH, �T(H)C,7BH, �b(H)C, aTop		  ≤ �)*7 M� N6BH, �(H)C,7BH, �(H)CO : � ∈ DP, 
And so  inf M� N6BH, �(H)C, 7BH, �(H)CO : � ∈ DP = 0, 
Hence proved. 
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